Netrin-1 Promotes Synaptic Formation and Axonal Regeneration via JNK1/c-Jun Pathway after the Middle Cerebral Artery Occlusion

نویسندگان

  • Mouwei Zheng
  • Ronghua Chen
  • Hongbin Chen
  • Yixian Zhang
  • Jianhao Chen
  • Peiqiang Lin
  • Quan Lan
  • Qilin Yuan
  • Yongxing Lai
  • Xinhong Jiang
  • Xiaodong Pan
  • Nan Liu
چکیده

As a secreted axon guidance molecule, Netrin-1 has been documented to be a neuroprotective factor, which can reduce infarct volume, promote angiogenesis and anti-apoptosis after stroke in rodents. However, its role in axonal regeneration and synaptic formation after cerebral ischemic injury, and the related underlying mechanisms remain blurred. In this study, we used Adeno-associated vectors carrying Netrin-1 gene (AAV-NT-1) to up-regulate the expression level of Netrin-1 in rats' brain after middle cerebral artery occlusion (MCAO). We found that the up-regulated level of Netrin-1 and its receptor DCC promoted axonal regeneration and synaptic formation; the overexpression of Netrin-1 activated the JNK1 signaling pathway; these effects were partially reduced when JNK1 signaling pathway was inhibited by SP600125 (JNK specific inhibitor). Taken together, these findings suggest that Netrin-1 can facilitate the synaptic formation and axonal regeneration via the JNK1 signaling pathway after cerebral ischemia, thus promoting the recovery of neural functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treatment of stroke with a synthetic liver X receptor agonist, TO901317, promotes synaptic plasticity and axonal regeneration in mice.

In this study, we tested the hypothesis that TO901317 promotes synapse plasticity and axonal regeneration after stroke. Adult male C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo) and treated with or without TO901317 starting 24 h after MCAo daily for 14 days. Axonal damage and regeneration were evaluated by immunostaining. TO901317 significantly increased synaptophysin e...

متن کامل

CD151 mediates netrin‐1‐induced angiogenesis through the Src‐FAK‐Paxillin pathway

Crosstalk between the nervous and vascular systems is important during development and in response to injury, and the laminin-like axonal guidance protein netrin-1 has been studied for its involvement in angiogenesis and vascular remodelling. In this study, we examined the role of netrin-1 in angiogenesis and explored the underlying mechanisms. The effect of netrin-1 on brain tissues and endoth...

متن کامل

Maslinic acid promotes synaptogenesis and axon growth via Akt/GSK-3β activation in cerebral ischemia model.

Maslinic acid, a natural pentacyclic triterpene from Olea europaea plants, possesses neuroprotective effects both in vivo and in vitro. However, the mechanism of its action is not well understood. In this study, we investigated the potential effects of maslinic acid on synaptogenesis and axonal regeneration, as well as the possible signal pathway involved in a cerebral ischemia mouse model. Adu...

متن کامل

Netrin-1 Ameliorates Blood-Brain Barrier Impairment Secondary to Ischemic Stroke via the Activation of PI3K Pathway

Secondary impairment of blood-brain barrier (BBB) occurs in the remote thalamus after ischemic stroke. Netrin-1, an axonal guidance molecule, presents bifunctional effects on blood vessels through receptor-dependent pathways. This study investigates whether netrin-1 protects BBB against secondary injury. Netrin-1 (600 ng/d for 7 days) was intracerebroventricularly infused 24 h after middle cere...

متن کامل

The neurorestorative benefit of GW3965 treatment of stroke in mice.

BACKGROUND AND PURPOSE GW3965, a synthetic liver X receptor agonist, elevates high-density lipoprotein cholesterol and has antiatherosclerosis and anti-inflammation properties. We tested the hypothesis that GW3965 treatment of stroke increases vascular remodeling, promotes synaptic protein expression and axonal growth in the ischemic brain, and improves functional outcome in mice. METHODS Mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2018